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Abstract The breaking force during transversal loading

of fibre-cement corrugated roofing sheets was measured on

several test samples from a serial production. The results

were statistically analyzed assuming the 2-parameter

Weibull statistics. In addition, Monte Carlo statistical

simulations were made by using a computerised built-in

random-number generator. While smaller sample data

groups, mostly containing up to 50 samples, were studied

in the literature, we extended their size up to 400 samples.

We showed that some trends in the evaluation of statistical

parameters which hold for smaller data groups, apply well

to larger data groups. In particular, we confirmed that the

statistical distribution of the Weibull parameters obtained

from repeated Monte Carlo simulations is log-normal.

Furthermore, we considered the influence of the measure-

ment uncertainty on the statistical parameters.

Introduction

In recent years there have been numerous successful

investigations in civil engineering relating to the develop-

ment of fibre-cement composites using various organic or

synthetic fibres [1–6]. However, during the development

stage the new composite materials and their products have

to be tested rigorously using classical mechanical tests,

such as the 3-point bending test [7, 8]. In addition, in order

to control the production quality mechanical tests should be

regularly performed on samples from serial production.

The strengths measured in typical mechanical tests for

brittle materials, e.g., ceramics, cement and concrete, result

in a Weibull statistical distribution [9–11]. This distribution

has been widely used not only in civil engineering [12–16],

but also in many other fields, with many examples from the

literature given in [11]. Usually, a simple 2-parameter

Weibull statistics is used, although in many cases the

application of 3-parameter Weibull statistics or Weibull

statistics corresponding to two or more different fracture

modes gives better results [11, 15, 17, 18].

The validity of the Weibull parameters’ estimations has

been investigated experimentally and theoretically [17–34].

For instance, Orlovskaja et al. divided the 137 strength

values obtained in the bending tests of a recrystallised

silicon carbide ceramic into 105 random smaller subsets

and studied the corresponding statistics on the different

values of the Weibull parameters from several subsets [23].

They found a good agreement in the variation of the scale

parameter with previous theoretical predictions [22] but the

agreement for the Weibull modulus was worse and this was

attributed to the deviation of the strength statistics from

ideal Weibull statistics.

Several authors used Monte Carlo simulations with

prescribed (input) Weibull parameters to obtain sample

data (instead of real experimental data) with the following

aims: (a) to compare the results for different procedures of

estimating Weibull parameters [32], (b) to optimise the

simple probability estimator functions in the linear

regression method in order to minimise the biasing and/or

estimation uncertainty of the Weibull parameters [25–33],

(c) to analyze the type of the distribution functions for the

large sets of estimated Weibull parameters [19, 21, 24, 26].
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Jožef Stefan Institute, Jamova 39, Ljubljana 1000, Slovenia

e-mail: milan.ambrozic@ijs.si

K. Vidovič
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One of the important results of such studies is, for instance,

that the distribution functions of the estimated Weibull

parameters from several Monte Carlo repetitions obey the

log-normal distribution which is considerably asymmetri-

cal for small sizes of sample data groups [21, 24, 26]. It has

also been pointed out that the statistical distribution of the

ratio mest/m (where mest is the estimated Weibull modulus

for a single data group in one Monte Carlo simulation and

m is the input Weibull modulus) in the series of repeated

Monte Carlo simulations is independent of the choice of

particular values of input Weibull parameters [19, 21],

except for the moments method [32]. Most Monte Carlo

studies have been limited to small sizes of data groups, up

to 50, since most experimental measurements are limited to

such data-group sizes.

In this article the results of measurements of the trans-

verse breaking force on corrugated roofing sheets, i.e., the

samples from the serial production, are presented. The

experimental data are fitted to the 2-parameter Weibull

probability distribution function. The first aim of this paper

is to show that the 2-parameter Weibull statistics can be

used successfully in this case. Furthermore, we confirm the

validity of the theoretical assumption that the estimated

positive Weibull parameters for several sample groups of

finite size obey the log-normal distribution. For this task a

computerised random-number generator is used. The

validity of the estimated confidence bounds on Weibull

parameters (which depend on the size of the testing group)

is checked and some results are compared to those in the

literature. We extend the study of small data groups to the

sizes of sample data groups up to 400. Finally, the signif-

icance of the measurement uncertainty to the statistical

results is evaluated.

Experiment

The material composition and the manufacturing process

for the corrugated roofing sheets based on the Hatschek

procedure are described elsewhere [1, 35, 36]. In short, the

sheets are made of a fibre-cement composite with short-cut

polyvinyl alcohol (PVA) fibres in our case. The sheet

dimensions are: width W = 920 mm, length L = 1250 mm,

corrugation pitch P = 177 mm, corrugation height

H = 51 mm (Fig. 1). The typical thickness, T, of the sheets

is between 5.95 mm and 6.20 mm. This is the product

dimension which is the most difficult to control and con-

tributes to the scatter of the experimental force data (in

addition to material’s inherent strength and the space dis-

tribution of flaws in the material). Before the mechanical

measurements the test sheets were soaked in water for

24 h, in order to simulate the influence of bad weather

conditions on their mechanical properties.

For the determination of the mechanical properties of the

sheets the methods prescribed by the European standard EN

494 were used [8]. In this paper we focus on the measure-

ment of the breaking force, F, during transversal loading

with respect to the sheet corrugations, which is essentially a

3-point bending test: the load is slowly increased until the

sample sheet breaks. The prescribed distances are shown in

Fig. 1. The strips of soft material, for instance felt, are

recommended to be inserted between the sheet and the

loading and supporting bars. The bars must be longer than

the sheet width and must be aligned perpendicularly to the

sheet corrugations as well as possible. The load rate should

be such that the rupture of the specimen occurs between

10 s and 45 s after beginning of loading. For these mea-

surements a BP-10 laboratory press-machine (Walter + Bai

AG, Switzerland), with the measuring scales 2 kN and

10 kN, and equipped with the corresponding software, was

used. The measurement uncertainty of the breaking force

was estimated to 30 N, i.e., relative uncertainty is about

0.5% for a typical breaking force of 6 kN. But the actual

uncertainty may be higher if additional effects, such as the

sample misalignment, are considered.

Statistical evaluation of the data

Our statistical variable is the transversal breaking force

(shortly called the force), F, with the probability density

function p(F). The cumulative probability function, also

called the unreliability function, is defined as:

PðFÞ ¼
R F

0
pðF0ÞdF0, which means the probability of find-

ing the value for the measured force to be less than F [11].

Fig. 1 The geometry of transverse loading according to the European

standard EN 494. Lengths are given in milimeters
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In the case of 2-parameter Weibull statistics, the functions

p(F) and P(F) are equal to:

pðFÞ ¼ m

F0

F

F0

� �m�1

exp � F

F0

� �m� �

ð1aÞ

PðFÞ ¼ 1� exp � F

F0

� �m� �

; ð1bÞ

with the pair of Weibull parameters m and F0. The

dimensionless Weibull modulus, m, and the scale param-

eter, F0, determine the slope and position of the straight

line in the linear diagram y(x), which represents the

P(F) dependence in the rescaled variables, x = ln F and

y = ln(ln(1/(1 � P))).

After measuring N values of the force, Fi, i = 1 to N, the

data are fitted to the unreliability function (1b), in order to

estimate the Weibull parameters m and F0. Here, a rough

sketch of the procedure is given; the reader can find more

details elsewhere [11, 37–39]. The N values Fi are first

sorted in increasing order. Then the value Pi corresponding

to the unreliability function is attributed to the i-th value

Fi (Pi being independent of the value xi) by solving

numerically the equation:

XN

k¼i

N
k

� �

Pk
i ð1� PiÞN�k ¼ 0:5; ð2aÞ

in accordance with the binomial distribution [38].

Alternatively, a much simpler equation is often used,

which leads to similar calculated values for Pi:

Pi ¼
i� 0:3

N þ 0:4
ð2bÞ

Other simple formulas are also used in the literature,

instead of Eq. 2b [11, 15, 25–33, 40]. Finally, the ordered

data pairs (xi, yi), with xi = ln Fi and yi = ln(ln(1/(1 � Pi))),

are fitted to the straight line. The best-fit criterion is the

minimum sum of either squared horizontal distances

(X-regression), or squared vertical distances (Y-regression)

between the line and the data points.

Knowing the Weibull parameters one can calculate

various statistical parameters, for instance, the theoretical

mean value <F>? of the force and its standard deviation

dF?, corresponding to the limit N ? ?, and compare

them to the actual values, <F>N and rFN, for a finite sample

group of size N. The relevant formulae are:

\F [1 ¼ F0 � C 1þ 1

m

� �

ð3aÞ

rF1 ¼ F0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C 1þ 2

m

� �

� C2 1þ 1

m

� �s

; ð3bÞ

where C ¼
R1

0
tx�1e�tdt is the gamma function, and:

\F [ N ¼
1

N

XN

i¼1

Fi ð4aÞ

rFN ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

XN

i¼1

ðFi �\F [ Þ2
vu
u
t : ð4bÞ

The estimation of the confidence intervals of the

calculated Weibull parameters is usually done with the

help of the Fisher matrix of the system [39] and some details

of this procedure are given in the Appendix. One can then

predict with some confidence level CL (probability), that the

actual value of the parameter in question lies within some

interval (confidence bounds). A confidence level CL = 90%

is often used. In the calculation of the confidence bounds of m

and F0 from the Fisher matrix corresponding to the set of N

data points it is assumed that the distribution of the estimated

values of the parameters is log-normal. This means that if

there are several groups of size N of independent

experimental data, and for each group different values of m

and F0 are obtained, the resulting distribution of their natural

logarithms is Gaussian:

pðln xÞ ¼ 1

w
ffiffiffiffiffiffi
2p
p exp � 1

2

ln x� a

w

� �2
 !

; ð5Þ

where x stands either for m or for F0; let us take it to be m.

Thus the most probable value of m is estimated as

m = exp(a). The lower bound, mLB, and the upper bound,

mUB, of the confidence interval corresponding to a given

confidence level, CL, are given as: mUB;mLB ¼
m � expð�w � erf�1ðCLÞÞ, where the plus and minus sign

refer to mUB and mLB, respectively, and the error function

is defined as:

erf ðxÞ ¼
ffiffiffi
2

p

r Z x

0

expð�t2=2Þdt:

The same procedure is used for the estimation of the scale

parameter F0 and its confidence bounds, F0,LB and F0,UB. It

should be noted that the confidence bounds can be calcu-

lated for other statistical parameters as well, e.g., for the

mean value and standard deviation of the force, and even

for the P(F) dependence: more specifically, the fraction of

broken test samples for a given load [17].
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Model

For comparison we use three different approaches to

evaluate or model the experimental data as described

below.

Using experimental data and the Fisher matrix

Different groups of different sizes N out of available

experimental force data (460 values altogether) are inserted

into ReliaSoft’s commercial computer program package

Reliasoft-Weibull++ for the computation and visualisation

of the statistical distribution [11]. This program uses the

formula (2a) to obtain the N values Pi, and then the linear

function is searched that best fits the N points with rescaled

variables (xi, yi). Both regression types, X and Y, give

slightly different values of estimated parameters. Here we

present the results for the Y-regression. The Fisher matrix

is used to obtain the ‘‘half-widths’’ wm and wF0 of

the Gaussians (5) for both parameters and finally the

confidence bounds for m and F0 are calculated.

Mixing experimental data using the computer random

generator

The procedure of dividing the experimental data into

smaller random subsets (subgroups) was used before, for

instance in Ref. [23]. We have written our own computer

program for this task, where both formulae, (2a) and (2b),

to get the probabilities Pi, and both types of regression, X

and Y, are used. For a chosen N, say N = 50, we repeat

several (typically Nrep = 5 � 104) times the following pro-

cedure. We use the computerised built-in random-number

generator (giving homogeneously distributed numbers

from 0 to 1) to ‘‘shuffle’’ the 460 experimental force values

and choose the N values out of them. Each time we obtain a

different pair of values for m and F0, as described above,

thus we have altogether Nrep such pairs. We finally fit the

distribution of their logarithms to the Gaussian function

(5), to obtain the most probable values of the Weibull

parameters and the corresponding confidence intervals.

Generating data by random generator (Monte Carlo

simulation)

This procedure is similar to that described in (Mixing

experimental data using the computer random generator)

except that instead of experimental data we generate the

Monte Carlo data for the forces, using the prescribed

input Weibull parameters minp and F0,inp, similarly as was

done, for instance, in Refs. [25–33]. A ‘‘random’’ force is

calculated from the given random number r, using Eq. 1b,

by:

F ¼ P�1ðrÞ ¼ F0;inp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln
1

1� r

� �
minp

s

: ð6aÞ

Taking Nrep statistical repetitions and the group size N we

get Nrep � N independent forces altogether and Nrep different

pairs of m and F0. Finally, we obtain the most probable

values of m and F0 and the corresponding confidence

intervals in the same manner as described in (Mixing

experimental data using the computer random generator).

Until now the measurement of the transversal breaking

forces was assumed to be precise. To our knowledge, the

measurement errors have always been neglected in the

literature. We can also simulate the measurement uncertainty

by taking the Gaussian distribution of measuring errors:

pðDFÞ ¼ 1

wF

ffiffiffiffiffiffi
2p
p exp � 1

2

DF

wF

� �2
 !

;

where DF means the error of the individual measurement

and wF is the measurement uncertainty. We include the

measurement errors in the Monte Carlo simulation by:

F ¼ F0;inp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln
1

1� r1

� �
minp

s

� wF � erf�1ðj2r2 � 1jÞ;

ð6bÞ

where r1 and r2 are two independent random numbers. In

the second term the negative or positive sign is chosen,

whether r2 < 0.5 or r2 > 0.5, respectively.

Results and discussion

Several force values were collected in the years 2003–

2005 and in the present work 460 values for non-coloured

sheets are selected out of them. For instance, since it can

proved that the production in the three summer months,

from June to August, results in a lower mean force

compared to the rest of the year only the data from the

other 9 months are used to get the above mentioned 460

values.

We compare the results for several testing samples

(either on experimental data or in Monte Carlo simulation)

and for different ways of fitting the data to the Weibull

statistics. We find a negligible difference in the Weibull

parameters when Eqs. 2a or b are used for probabilities Pi,

respectively. On the other hand, there is a small, but evi-

dent difference between the results from X and Y regression

in the fitting procedure: on average X regression gives

slightly larger Weibull modulus and we are not able to
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explain this fact. All results in this paper are presented for

the simple formula (2b) (except for the results from the

program Reliasoft-Weibull++, which uses formula (2a))

and Y regression.

Non-mixed experimental data and the Fisher matrix

First, all the 460 force values are taken and the following

parameters are obtained: m = 12.40, F0 = 6293 N, with the

correlation coefficient q = 0.9835; since q is nearly 1, this

means a very good fitting of experimental data to the Weibull

statistics. A consistent result is obtained for the mean force:

<F>? = <F>N = 6038 N. However, the standard devia-

tions, calculated by (3b) and (4b) differ: rF? = 592 N and

rFN = 602 N, and the possible reasons for this disagreement

will be examined later on. Using the Fisher matrix the 50%

and 90% CL bounds for m and F0 are calculated. For

instance, the 90% CL interval for m is (11.77, 13.07), i.e., its

width is about 10% the estimated value for m. On the other

hand, the 90% CL interval for F0 is (6250 N, 6336 N); its

width is only about 1% of the estimated value for F0.

In the next step the dependence of confidence intervals

on the size N of the testing group is investigated. The N

sample values, e.g., N = 50 data, are chosen out of total

460 data in the same order as obtained in the measure-

ments, from the beginning of year 2003. The width of the

confidence intervals decreases with increasing N, as should

be the case. Figure 2 shows the N-dependence of the esti-

mated Weibull parameters and their 50% and 90% CL

bounds. Kinks in the curves indicate possible seasonal

fluctuations in the quality of the products which may arise

because of the limited control of some production param-

eters, such as the quality of raw materials, temperature,

moisture, etc. Nevertheless, a slight increase of m and

decrease of F0 with N can be noticed.

Mixing experimental data

In the next step we ‘‘shuffle’’ well the experimental data by

random generator. The distribution of the values of both

Weibull parameters fit the log-normal function excellently in

all cases. Even in the case N = 400 where the ‘‘half-width’’ of

the distribution function is narrow it was evident that fitting to

log-normal function works better than fitting to Gaussian. In

Fig. 3a,c the estimated parameters for non-mixed and mixed

experimental data are compared; the data points for parame-

ters according to mixed experimental data are given as the

most probable values, see Eq. 5. The variations of the esti-

mated parameters with N for mixed data are much smaller in

comparison to non-mixed data and this can be attributed to the

use of the most probable values of the parameters in the case of

mixed data. Nevertheless, a trend of slightly increasing m and

decreasing F0 remains. Figure 3b,d compare the widths of the

corresponding confidence intervals: Dm = mUB � mLB,

DF0 = F0,UB � F0,LB. The values for non-mixed and mixed

data are similar except for large N. Perhaps, it is not com-

pletely correct to obtain N data from finite amount of the same

data in each of Nrep repetitions instead of taking independent

data each time, especially when taking randomly, from

instance, 400 data from only 460 different values. Neverthe-

less, this procedure at least reveals the log-normal distribution

of the Weibull parameters and shows qualitatively consistent

N-dependence of the estimated Weibull parameters and their

confidence intervals. This is most probably due to the fact that

we can still get an enormous number of combinations (com-

pared to Nrep) in selecting, for instance, 400 values out of 460.

Fig. 2 Dependence of the

estimated Weibull parameters

from the non-mixed

experimental data and the

corresponding 50% and 90%

CL bounds on the testing group

size N: (a) Weibull modulus, (b)

scale parameter
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Monte Carlo simulations

Next, we make a Monte Carlo simulation of the force

data, first with no measurement error, Eq. 6a. The input

parameters minp = 12.40 and F0,inp = 6293 N are used

which are believed to be near the true values since these

are the values estimated for all N = 460 data points.

Usually we take Nrep = 5 � 104, however to confirm the

corresponding statistical results we make from time to

time a test with even 10-times larger Nrep. The estimated

Weibull parameters and the widths of the corresponding

confidence intervals are compared to those for experi-

mental data in Fig. 3. The estimated values of m and F0

for Monte Carlo simulation and mixed experimental data

differ very little. Such a good agreement suggests that

the method of mixing experimental data described in

(Mixing experimental data using the computer random

generator) is a reliable strategy to obtain Weibull

parameters. It is also clearly seen that using the formula

(2b) slightly underestimates the true value of the Weibull

modulus m, as was already claimed by Wu et al. [32, 33]

and other authors. Using Monte Carlo simulations, they

showed that in the case of small N the simple formulas

like (2b) give slightly biased values of Weibull moduli,

either too high or too low values. For N = 50 we get

m = 11.96 instead of the ‘‘true’’ value 12.40, that is a

3.5% difference, while F0 is overestimated by 0.2%;

these estimation errors decrease slowly with N, as shown

in Fig. 4. Consequently, the calculated mean force <F>?

and its standard deviation rF? from Eqs. 3, deviate from

the values, corresponding to the input parameters minp

and F0,inp, as shown in Fig. 4. Figure 4 also shows the

agreement with the Monte Carlo study of Wu et al.

where the accuracy of the estimated scale parameter was

Fig. 3 Comparison of the

estimated Weibull parameters

and the widths of the

corresponding 50% and 90%

CL intervals for the non-mixed

experimental data, mixed

(shuffled) experimental data and

Monte Carlo data for different

N: (a) estimated m, (b) width of

the confidence intervals Dm, (c)

estimated F0, (d) width of the

confidence intervals DF0. The

data points for parameters

according to mixed

experimental and Monte Carlo

data in Figs. (a) and (c) are

given as the most probable

values, see Eq. 5
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shown to be about an order of magnitude higher com-

pared to Weibull modulus [32].

Peterlik, Orlovskaja et al. found that the average

modulus is overestimated while the scale parameter is

underestimated in the statistical procedure of dividing the

fundamental data set into smaller subsets [22, 23], con-

trary to our results and those of Wu et al. [32] (and other

authors). The most probable reason for this disagreement

is their use of maximum-likehood method to estimate the

Weibull parameters instead of the linear regression

method described above. It is well known that different

methods give different results [11, 25–33] and our cal-

culations confirm this fact. It should be also mentioned

that the direct arithmetic averaging of the Weibull

parameters over statistical repetitions, as described in Ref.

[23], is not completely correct; their natural logarithms

should be averaged instead since their distribution is log-

normal. Direct arithmetic averaging brings a factor

exp(w2/2) to the ‘‘true’’ value of the Weibull parameter,

see Eq. 5, and this can be also verified by Monte Carlo

simulation. But this factor is only slightly greater than 1

for both parameters and cannot explain the differences in

the biaxing of the Weibull parameters in Ref. [23] and

our work.

As regards the confidence bounds of the parameters

there is a significant discrepancy between the results from

Monte Carlo simulations on one hand, and from experi-

mental data (mixed or not) on the other hand. The Monte

Carlo simulations give larger confidence intervals (Fig. 3

c,d), thus the estimations of the confidence bounds from a

limited number of data must be taken with some reserva-

tion. The comparison of the confidence interval widths

from experimental and Monte Carlo data, such as those in

Fig. 3c,d could serve to determine the correction factors for

the confidence bounds obtained with the use of the Fisher

matrix of the limited amount of experimental data. Fur-

thermore, the standard deviations of the Weibull

parameters which can be calculated from the widths of the

corresponding log-normal distributions (5) do not fit the

formulae suggested in Refs. [22, 23] and, by our opinion,

the reason for this disagreement is the same as described

above for the disagreement in the biasing of the parame-

ters. Moreover, we compared our ‘‘half-widths’’ w of the

distribution function (5) for the Weibull modulus with the

simple fitting formula in Ref. [24] where the author used

the linear regression method to obtain Weibull paramers, as

we did. Although the author studied the maximum size of

N = 50 only, his fitting formula agrees reasonably well

with our results even up to N = 400, where the deviation is

only 5%.

In all Monte Carlo simulations we calculate the mean

force and its standard deviation in both ways, using Eqs. 3

and 4, to check their consistency. <F>? and rF? are

calculated only at the end of the Monte Carlo simulation,

by using m and F0 as the most probable parameters in the

log-normal distribution. <F>N is obtained as the average

over all Nrep � N forces in the simulation, while rFN is

calculated for each repetition (group size N) and then

averaged over all Nrep values. While <F>? and <F>N agree

very well, rFN < rF? always holds. For N = 50 the rela-

tive difference between rFN and rF? is about 4.3% and

decreases with N, being only 1% for N = 400.

Monte Carlo simulations considering measurement

uncertainty

In order to investigate the influence of the measuring error

on the evaluation of statistical parameters we repeat Monte

Carlo simulations, now using Eq. 6b with the estimated

measurement uncertainty wF = 30 N, taking again minp =

12.40 and F0,inp = 6293 N. The differences of all statisti-

cal parameters in comparison to wF = 0 are found to be

negligible for all investigated N up to 800. Even for an

exaggerated measurement uncertainty wF = 100 N the

parameters change a little. Here, we give the calculated

parameters for comparison in the case N = 460:

Fig. 4 The N-dependence of the error in the estimated statistical

parameters from Monte Carlo simulations due to biasing the

parameters by using Eq. 2b: m, F0, <F>? and rF?. Input parameters:

minp = 12.40, F0,inp = 6293
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• wF = 0: m = 12.32 (90% CL interval from11.39 to

13.32), F0 = 6295 N (90% CL interval from 6253 N to

6337 N), <F>? = <F>N = 6038 N, rF? = 596 N,

rFN = 591 N

• wF = 100 N: m = 12.15 (90% CL interval from11.25 to

13.13), F0 = 6298 N (90% CL interval from 6255 N to

6340 N), <F>? = <F>N = 6038 N, rF? = 604 N,

rFN = 599 N

Only when wF becomes comparable to rF?, does the

measurement uncertainty influence the statistical results

significantly. The (virtual) decrease of m with increasing

wF has been expected since the measurement uncertainty

widens the force distribution function, similarly as lower m

would do. Here we must emphasise that although the

measurement uncertainty has been incorporated in the

simulation by (6b) the inverse procedure of getting

the Weibull parameters from the Monte Carlo force data is

still based on the function (1b) for exact measurement.

There remains a question of the correct interpretation of

the 1,7% discrepancy between rFN and rF? for N = 460

experimental data as mentioned at the beginning of this

section: rFN > rF?, in contrast to predictions from Monte

Carlo simulations, which at least on average give rFN <

rF?, even when the measurement error is included. To

explore this question further we repeat Monte Carlo sim-

ulations for N = 460, but now we compare rFN and rF? in

each of the Nrep repetitions separately. Although rFN <

rF? holds on average, the opposite is found to be the case

in 7.8% of Monte Carlo repetitions for wF = 0 (no mea-

surement uncertainty), in 9.6% repetitions for wF = 30 N,

and in 11.4% for wF = 100 N. This gives a relatively small

(but not at all negligible!) probability of finding rFN > rF?

in a particular case of experimental data. We conclude that

rFN > rF? in our case could be explained by uncertainties

of the statistical parameter estimations in the procedures

described above, and that the measurement errors have a

less significant influence on the result.

Application of the 3-parameter Weibull distribution

Of course, another, simpler explanation can be found for the

rFN > rF? discrepancy. Perhaps the experimental data may

be better described by another statistical distribution. We

have also used the 3-parameter Weibull distribution where

the third parameter Fsh means the shift of the breaking

force, F ? F � Fsh, in Eq. 1. Physically this means that

theoretically the smallest breaking force is Fsh. Fitting the

460 experimental data to the 3-parameter Weibull statistics

in the Reliasoft’s program results in the following param-

eters: m = 4.16, F0 = 2456 and Fsh = 3808. The correlation

coefficient is now q = 0.9945, higher than for 2-parametric

Weibull distribution since 3 parameters give higher

flexibility to fit the experimental data than 2 parameters.

The new parameters give <F>? = 6039 N and a consistent

relation rF? = 604 N > rFN. These results do not mean that

the description of the experimental data with the 2-param-

eter Weibull statistics is essentially wrong since there is

no obvious physical reason that the 3-parameter Weibull

statistics is valid.

Conclusions

A study of the statistical distribution of the measured val-

ues of the breaking force in the transversal 3-point bending

test of corrugated roofing sheets has been made. The

measurements can be fitted well to the 2-parameter Weibull

statistical distribution since the correlation coefficient is

close to the value 1 in all cases. The comparable Monte

Carlo simulations were also made, to reveal that the dis-

tribution of the Weibull parameters from independent

groups of data (of equal size) is log-normal. However, the

actual sizes of the confidence intervals of the estimated

parameters seem to be much larger than those estimated

from the finite amount of data by using the Fisher matrix.

Another applied procedure, somewhere between that of

using the Fisher matrix on the group of experimental data

and the Monte Carlo approach, is repeatedly mixing and

extracting the experimental data and obtaining the confi-

dence bounds of the parameters directly from their

statistical distributions. The latter procedure, although not

rigorously justified, indicates that the problem of the cor-

rect determination of the confidence intervals lies in the

limited number of experimental data, but not in use of the

Fisher matrix.

The measurement uncertainty is ‘‘screened’’ within the

width of the distribution function of the measured quantity.

In our case it has a negligible effect on the evaluated sta-

tistical parameters, and it becomes significant when the

order of magnitude of the measurement errors approaches

the inherent standard deviation of the quantity. Of course,

in that regime the use of Eq. 1b, which neglects the mea-

surement uncertainty, is not applicable. However, it is in

principle possible to decouple the Weibull distribution

from the measurement uncertainty directly from given

experimental data, and this is the subject of our future

work.

Finally, it should be emphasised that the problems

described above, together with their possible solutions

using time-effective Monte Carlo simulations (which can

be run on a personal computer), are related not only to

the specific problem of the Weibull statistics of breaking

forces, but have a much wider dimension. For instance,

as long as any free parameter of any statistical distribu-

tion (not only the Weibull statistics) is strictly positive, it
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is to be expected that its statistical distribution will be

log-normal.
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Appendix: The Fisher matrix and the parameter

confidence bounds

First the logarithmic likelihood function K is defined which

can also be used for the estimation of the Weibull param-

eters according to the maximum likelihood method:

Kðm;F0Þ ¼
XN

i¼1

ln pðFi;m;F0Þ;

where N is the number of measurements, p is the

distribution function (1a), Fi is the i-th breaking force,

and the parameters m and F0 can still be varied. The

Fisher information matrix F is defined by the second

derivatives of the function K with respect to Weibull

parameters:

F ¼
o2K
om2

o2K
omoF0

o2K
omoF0

o2K
oF2

0

" #

When the estimated Weibull parameters (obtained, for

instance, by the linear regression method) are inserted into

the Fisher matrix which is afterwards inverted the

covariance matrix C is obtained which consists of

variances and covariance of the Weibull parameters:

C ¼ VarðmÞ Covðm;F0Þ
Covðm;F0Þ VarðF0Þ

� �

¼ F�1

Finally the variances of the parameters are used to

obtain the corresponding ‘‘half-widths’’ w in Eq. 5, for

instance for the parameter m:

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðmÞ

p

m
;

from which the confidence bounds can be calculated as

described above: mUB;mLB ¼ m � expð�w � erf�1ðCLÞÞ,
and similarly for F0.
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